2.0 Roadway Separation/Reinforcement

- 2.1 Paved Roads*
- 2.2 Unpaved Roads**
- 2.3 MESLs
- 2.4 Railroads

California Bearing Ratio (CBR) Test (to assess strength of subgrade soil)

- its mainly a laboratory test
- can be "unsoaked" or "soaked"
- needs representative sample
- based on penetration force in soil compared to standardized stone base
- can also be done in field
- ASTM D 1883 (lab); or D 4429 (field)

 $CBR(\%) = \frac{Force in Subgrade Soil}{Force in Stone Base} (100)$

Geotextile	CBR Value (%)			
Function	unsoaked or field	soaked		
Separation ⁽¹⁾	≥ 8	≥ 3		
Stabilization ⁽²⁾	8-3	3-1		
Reinforcement ⁽³⁾	≤ 3	≤ 1		

- (1) As in paved roads
- (2) Depends on traffic use and loads
- (3) As in unpaved roads (also geogrids)

2.1 Paved Roads

2.1 Paved Roads - Separation

- Geotextile placed on soil subgrade covered with granular base course and then paved
- Function is separation, i.e., no holes are acceptable
- Thus focus is on installation survivability
- Several design models available:
 - burst resistance
 - grab tensile strength resistance
 - puncture resistance
 - Impact (tear) resistance
- Burst model follows:

Burst Resistance Design

$$FS = \frac{T_{allow}}{T_{reqd}}$$

$$= \frac{p_{test}d_{test}}{(\prod RF)p'd_{v}}$$

Example: If $d_{test} = 30 \text{ mm}$, $d_v = 0.33d_a$; $\Pi RF = 1.5$; what is FS?

Solution:

$$FS = \frac{p_{test} 30}{(1.5)p'(0.33 d_a)}$$
$$= \frac{60p_{test}}{p'd_a}$$

further: If p' = 700 kPa; p_{test} = 2000 kPa and d_a = 50 mm

$$FS = \frac{60 (2000)}{(700)(50)}$$
$$= 3.5$$

or: make a design graph for a given FS, e.g., 2.0.

Example design graph for GT burst analysis

2.1 Paved Roads - Stone Containment*

- Geogrid (sometime geotextile) placed within granular base course
- Interlocking with base course to prevent lateral spreading is the function, i.e., lateral reinforcement
- Geogrid aperture size vis-à-vis base course size seems to be important
- High torsional rigidity may also be important
- Placement in lower half of base course appears best

^{*}Synthesis by Perkins & Ismeik, 1997 J. of G & G, Vol. 4, Geosynthetics Intl., is an excellent review

Reinforcement of Localized Depressions and Sinkholes

- identify cause of problem
- bracket lateral extent
- try to estimate depth
- try to estimate abruptness
- situation can be serious

Sinkhole Collapse Situation

Research on GG Reinforcement is Ongoing

2.2 Unpaved Roads

2.2 Unpaved Roads

- justification for GT or GG in paved roads is <u>longer service life</u>, while
- justification for GT or GG in unpaved roads is thinner stone base course
- soft soil conditions; $CBR_{us} \le 3$; $CBR_s \le 1$
- many manufacturers methods available also computer codes

2.2 Unpaved Roads (cont'd)

- basic hypothesis is that failure mode goes from punching shear to general shear
- Giroud method is generic and based on the modulus of the GT or GG
- needs modulus from D4595 wide width test
- see next design example and cost analysis

Unpaved road design example

Economic analysis

Distance	Aggregate	Aggregate	Aggregate	Geotextile	Geotextile
(km)	Cost	Cost	Savings	Cost	Savings
	(dollars/kN)	(dollars/m ² -mm)	(dollars/m²)	(dollars/m²)	(dollars/m²)
< 5	0.90	0.018	1.71	0.72	0.99
5-20	1.20	0.024	2.31	0.76	1.55
20-50	1.70	0.035	3.31	0.78	2.53
50-100	2.50	0.050	4.79	0.84	3.95
100-200	3.80	0.075	7.13	0.90	6.23

2.3 Membrane Encapsulated Soil Layers (MESLS)

- developed by Corps of Engineers Cold Regions Lab
- target soils are MLs and OLs which are moisture sensitive
- good bearing at optimum moisture; however too soft when wet, and too friable when dry
- optimum moisture is retained by encapsulating the soil with a bitumen impregnated GT
- needle punched nonwovens of high survivability properties are preferred

Various cross sections of MESLs

(a) Above-ground in cold regions (after Smith and Pazsint)

(b) Below-ground in semiarid regions (after Lawson and Ingles)

2.4 Railroads

- GT functions are separation, lateral reinforcement, filtration
- GG function is lateral reinforcement
- survivability requirements are very high
- abrasion and puncture are critical
- stay as deep in the cross section as economically possible

Railroads (cont'd)

Adequate Depth is Critical

- installation can cause puncture
- dynamic loads can cause abrasion
- sufficient ballast must be above GT to avoid both
- many situations have occurred where this was <u>not</u> the case

Observed GT abrasion damage as a function of depth beneath bottom of railroad tie

Geotextile depth when excavated (mm).
Add 50 mm for puncture depth.

End of Section-2